CHEM 483 – GREEN CHEMISTRY D. J. Darensbourg

Green Chemistry Metrics Equations

•
$$E Factor = \frac{Total \ waste \ (kg)}{kg \ product}$$

• Effective mass yield (%) =
$$\frac{Mass\ of\ products\ \times 100}{Mass\ of\ non-benign\ reagents}$$

• Atom economy =
$$\left(\frac{m.w.of\ product\ C}{m.w.of\ A + m.w.of\ B}\right) \times 100$$

• Atom economy =
$$\left(\frac{m.w.of\ product\ G}{m.w.of\ A + m.w.of\ B + m.w.of\ D + m.w.of\ F}\right) \times 100$$

• Mass Intensity (MI) =
$$\frac{Total\ mass\ used\ in\ the\ process\ (kg)}{Mass\ of\ product\ (kg)}$$

•
$$E \ Factor = MI - 1 = \frac{Total \ mass \ used \ in \ process - \ mass \ of \ product}{Mass \ of \ product}$$
 was

• Mass productivity =
$$\frac{I}{MI}$$
 × 100

$$= \frac{Mass \ product}{Total \ mass \ in \ process} \ \times \ 100$$

• % Carbon efficiency =
$$\frac{\textit{Amount of carbon in product} \times 100}{\textit{Total carbon present in reactants}}$$

• Carbon efficiency =
$$\frac{no.of \ moles \ of \ product \ \times \ no.of \ carbons \ in \ product \ \times \ 100}{(moles \ of \ A \ \times \ carbons \ in \ A) + (moles \ of \ B \ \times \ carbons \ in \ B)}$$

•
$$RME = \frac{mass\ of\ product\ C}{mass\ of\ A + mass\ of\ B}$$